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Abstract. Group cohomology techniques are used to derive conditions for a group 6 to 
be a local splitting group for G. As a first step the exactness of the inflation-restriction 
sequence gives a characterisation of factor systems arising in locally operating representa- 
tions of transitive transformation groups. Some examples and applications of the theory 
are also given. 

1. Introduction 

Kinematic groups of space-time transformations have played a very important role in 
the conceptual development of quantum theory. For instance, PoincarC and Galilei 
invariances and their relationship to the concept of elementary particle are well known 
by most physicists. More recently, Hoogland (1976a, b, 1977) has shown that the 
classification of elementary systems according to the equivalence classes of (semi- 
unitary) projective representations of the kinematic group cannot be considered as 
satisfactory and he pointed out that the representations of kinematic groups which are 
relevant for quantum mechanics are those christened by him as ‘locally operating 
representations’. This concept however was roughly defined and it seemed to be lacking 
a more precise definition. An intrinsic geometric formulation of such representations 
in the case of linear representations was recently given by Asorey er a1 (1983). A 
sketch of how to deal with the more general case of multiplier representations was 
also presented in a paper by Carifiena et al (1982), where the possibility was shown 
of reducing the problem to the older one of linear representations, but with the 
replacement of the group G by a new group 6 The case of Galilei group and Galilean 
relativistic wave equations was studied by Carifiena and Santander (1982). 

The aim of this paper is to look at some mathematical points which have not been 
considered till now, as far as we know. They are the characterisation of factor systems 
arising in locally operating representations and the identification of candidates for 
local splitting and representation groups. The tool is the inflation-restriction sequence 
(Cattaneo 1978), also called exact homology sequence (MacLane 1975), such as it was 
recently indicated by Carifiena er a1 (1983). 

The determination of a splitting group of G has been shown to be very adequate 
for the physical interpretation of some parameters characterising the cocycles defining 

$ In part from the PhD Thesis, University of Valladolid, December 1983. 
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the different extensions of G (see e.g. Carifiena and Santander 1975). It is well known 
since Bargmann's classical work (1954) that any projective representation P of a group 
G can be lifted to a linear representation of a group which is an extension of G by T 
but the point is that such a group depends on P. On the contrary, one splitting group 
d is enough for the lifting of any projective representation of G. The values of the 
parameters chartcterising the cocycles arise now as characterising the different rep- 
resentations of G and therefore are on the same footing as the remaining kinematic 
observables. 

In order for this paper to be self contained, we give in 9 2 a short summary of the 
inflation-restriction sequence, in the case we are considering in which A and T are 
trivial Polish G-modules. In 9 3 we will make use of this sequence to characterise the 
set of factor systems of locally operating representations of a transitive group of 
transformations. The existence and characterisation of local splitting and representa- 
tion groups, reducing the problem of multiplier locally operating representations of 
G to that of linear locally operating representations of such splitting groups, is analysed 
in 9 4. Finally, in 9 5 we show by means of some examples how the theory we have 
developed works. 

2. The inflation-restriction sequence 

In this section we will summarise some ideas about the inflation-restriction sequence 
in the simpler case we are going to use in the next section. For more detailed information 
we refer to appendix B of Cattaneo's paper (1978). Let ( E ,  p )  be a topological central 
extension of the Polish connected group G by the Abelian Polish group A. This means 
that the sequence 1 + A A E G -+ 1 is exact, p is a continuous epimorphism and 
i : A + i ( A )  c E is an injective homomorphism. If T is the circle group, the inflation 
inf" ( n  = 1,2), restriction, res', and transgression map, trg', are the maps defined as 
follows. The map inf" : H"(G, T )  + H " ( E ,  T )  ( n  = 1,2) is that induced from f + f o  p" 
of Z"(G,  T )  into Z " ( E ,  T )  which maps B"(G, T )  into B"(E,  T ) .  In a similar way is 
defined res' : H ' ( E ,  T )  -, H ' ( A ,  T ) .  On the other hand, trg' : H ' ( A ,  T )  -, H 2 (  G, T )  is 
defined by making use of the factor system W, : G x G + A associated to a (Borel) section 
U :  G-, E by passing to the quotients the map of Z'(A, T )  in Z2(G, T ) ,  x - , x  0 W, 
The cohomology groups we are considering are those of the so called Mackey-Moore 
cohomology (see Cattaneo and Janner 1974 and Moore 1964), the action of G on T 
being trivial. The fundamental point is that the following inflation-restriction sequence 
for ( E ,  G, p, T )  

inf' res' 
1 + H'(G,  T ) -  H ' ( E ,  T ) -  H ' ( A ,  T)t181- H2(G, T ) X  H 2 ( E ,  T )  

is exact. A proof of this fact can be found in Cattaneo (1978). It is noteworthy that 
for Polish groups, according to a theorem by Banach (1931), Borel 1-cocycles are 
continuous and consequently the inflation-restriction sequence can also be written as 
follows 

1 -, &+ -P A+ H 2 (  G, T )  -, H 2 ( E ,  T ) ,  

where the caret over the capital letters denotes the set of one-dimensional unitary 
continuous representations of the corresponding group, endowed with the compact- 
open topology relative to the original one. 
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3. Characterisation of factor systems of locally operating representations 

Let G be a connected Polish group of transformations of a topological space M. The 
action of G on M is assumed to be transitive and if xo is an arbitrary but fixed point 
in M, the space M may be identified to G/T, where r is the isotopy group of xo. By 
a locally operating multiplier representation of G we mean a Bore1 multiplier rep- 
resentation of G in which the representation space is made up by vector valued 
functions F :  M+C" and the representation of G is given by [ U ( g ) F ] ( g x )  = 
A(g,  x ) F ( x ) ,  where A :  G x M + G L ( M ;  C )  is a matrix function satisfying 
A(g,,  g , x )  A ( g , ,  x )  = ~ ( g , ,  g , )A(g ,g , ,  x )  which is called a gauge matrix. The function 
w : G x G + T, w E Z'( G, T ) ,  is the factor system of the representation U. 

The problem of (linear) locally operating representations has recently been studied 
on a paper by Asorey er a1 (1983) and more information, both from the mathematical 
and physical viewpoints can be found in the excellent lectures of Isham (1983), 
especially 00 1 and 5, where it is shown that the definition given above for U ( g )  is 
the local expression of a 'twisted' representation, i.e. U ( g )  corresponds to a transforma- 
tion in the space of sections of a vector bundle with base M. Locality now means that 
the support of the section U ( g ) $  is contained in the image of the support of I). From 
the infinitesimal viewpoint, the generators will be represented by local operators (which 
decrease supports) and it follows from a theorem of Peetre (1960) that they will be 
differential operators. In this paper we will deal with multiplier representations instead 
of linear ones and therefore factor systems w can appear and are going to be studied. 
In this section we will be interested in the characterisation of factor system which can 
arise in locally operating representations. The particular case of A being one 
dimensional and that of r being a connected and simply connected group can be easily 
answered. In fact, the defining relation for w given above, when restricted to r x { x o } ,  
leads to a multiplier representation of r, namely A(?',  xo) .  A ( y ,  xo)  = 
w ( y ' ,  y ) A (  y 'y ,  xo) ,  with factor system T = wirxr.  In the above mentioned cases such 
systems must be trivial (Bargmann 1954) and consequently only factor systems w 
whose restrictions to I' are equivalent to the trivial one can arise in a multiplier locally 
operating representation of such groups. 

The less trivial and more general case of r being a connected, but possibly not 
simply connected, Lie group can be analysed by using the inflation-restriction sequence 
corresponding to the covering homomorphism p : I'* + r, r* being the universal cover- 
ing group of I', i.e., the short exact sequence 1 + r l ( r )  + r* + r+  1. We will denote 
by a, A and 6 respectively the restriction, inflation and transgression homomorphisms. 
The first homotopy group is injected in the centre of r* and consequently is a trivial 
r-module. In the case of r being connected, in which we are interested, the action of 
r on the circle group to be considered is, the trivial action. Consequently, the inflation- 
restriction sequence is but 1 +e+ e* +r , ( r )  + H 2 ( r ,  T )  : H 2 ( r * ,  T )  and exactness 
of this sequence at H 2 ( T ,  T )  means that 6( r l ( r ) )  = ker A. The important point is that 
any finite-dimensional projective ?-representation of r, P, gives rise to a projective 
representation P 0 p of r* with factor system A( 7) which has to be trivial because of 
the simply connectedness of r*. Consequently, the restriction to r x r of factor systems 
W of locally operating multiplier representations of G will be in the kernel of the 
inflation map. 

Hereafter we will be restricted to the very general case where r is such that for 
every ? in the kernel of the inflation map there exists a finite-dimensional 7- 
representation of r. It is then possible to show that the set G, T )  of factor systems 

A S  

n 



3094 J F Carizena, M A del Olmo and M Santander 

of locally operating representations is just that of factor systems such that their 
restrictions to X T  are in the kernel of the inflation map. As a first remark it is 
worthwhile noting that for any 6 E H 2 (  G, T )  and any arbitrary Borel section s : M + G 
we can find a lift w E Z2(G,  T )  such that w/,(M)xr = 1. Actually, if 0' is a lifting of W 
and p :  G; T is defined by p ( g )  = w' (s (gxo) ,  y ( g ) ) ,  where y ( g )  = s(gx,)- 'gE r, one 
easily checks that w = 0'8p satisfies wl,(M)xr = 1. Moreover, w\rXl.= w[rxr .  The next 
lemma will prove the identity of ker A and HfOc( G, T ) .  

Lemma. Let W E H2( G, T )  be such that its restriction to r x r is in the kernel of the 
inflation map, w a lifting of 6 satisfying w ~ , ( ~ ) ~ ~ =  1 and D a finite-dimensional 
7-multiplier representation of r with 7 = wlrxr. A locally operating representation of 
G with factor systems in 6 is obtained by defining 

[ U ( g l f l ( g x )  = w(g ,  s ( x ) ) o ( Y ( s s ( x ) ) l f ( x ) .  

Proof: The gauge matrix A is a Borel function by construction. By taking into account 
identities such as g s ( x )  = s (gx )  y (gs (x ) ) ,  

Y ( g 'gs ( x 1 ) = Y ( g 's ( gx ) Y ( gs ( x ) 

and other similar ones, the cocycle identity for w and the additional hypothesis 
W I , ( M ) ~ ~  = 1, we easily check that 

4 g 2 ,  g , x ) A ( g , ,  x ) A - ' k 2 g , ,  x )  = w(g , ,g , )  

which proves the result of the lemma. 

As a consequence of this lemma we reach the conclusion that, in the case we are 
considering in which satisfies the aforementioned condition, HfOC(  G, T )  is made up 
of all factor systems w E H 2 (  G, T )  whose restrictions to r X r are in the kernel of the 
inflation map. As a byproduct we obtain that H;,,(G, T )  is a closed subgroup of 
H 2 (  G, T ) .  In fact, if the restrictions to r x T  of Ol and O2 are in ker A, that of the 
product W ,  . 6;' is also in ker A. On the other hand, let be a sequence of 
elements in FZ?J G, T )  that converges to w E H 2 (  G, T ) .  Then w,lrxr are in ker A and 
as it is closed, W l r x r  E ker A.  Consequently, Hfoc(  G, T )  will be closed. 

4. Local representation groups 

The inflation-restriction sequence can also be very useful for the characterisation of 
splitting and representation groups for G. We recall that if G is a Polish group and 
p :  6 + G an epimorphism, any splitting unitary representation R of 6 (i.e. mapping 
kerp on T )  defines a continuous unitary projective representation P of G such that 
T O R  = Pop ,  where rr is the canonical projection T :  .U(XL+ pu2l(X). The repre- 
sentation R is then said to be a lifting of P to 6. The pair (G, p )  is a splitting group 
for G if any continuous projective representations of G admits a linear lifting to G. 
We are interested in multiplier representations of G that are related to projective 
representations of G by means of the canonical projection T and the choice of a 
(Borel) section 7 for rr in such a way that, if U is a multiplier representation, T 0 U 
is a projective representation and, for any projective representation P, 7 0 P is a 
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multiplier representation. Notice that continuous projecti_ve representations corre- 
spond to Bore1 multiplier representations. If the action of G on M is defined via the 
projection p ,  the multiplier representation associated to the projective representation 
defined by a locally opefating linear representation of G will be a locally operating 
representation of G. If (G, p )  is such that any locally oper_ating multiplier repretentation 
of G admits such a locally operating linear lifting to G, we will say that (G,  p )  is a 
local splitting group for G. The problem is to analyse the existence of such a group 
and in the affirmative case its non-unicity, that is, the search for a 'minimal' one which 
will be called a local representation group G. 

As a first remark we want to point out that the same method used in Caririena and 
Santander (1979) shows that in the search for local splitting groups for a connected 
group G it is enough to consider central extensions of G by an Abelian kernel and 
therefore we will consider a central extension 1 + A + + G + 1 as well as the corre- 
sponding inflation restriction sequence 

The factor systems of locally operating-representations of*G that can be lifted to 
linear locally operating representations of G are those in trgl( A )  and therefore in order 
for (6, p )  to be a splitting group, t r g ' ( i )  =, Hfoc(  G, T ) .  This shows that a minimality 
condition for is that a be isomorphic to H;,,(G, T ) ;  consequently we should look 
for local representation groups which are central extensions of G by the dual group 
of HfOc( G, T )  endowed with an appropriate topology to be determined. 

As we have done in the preceding section we will only consider the case of r being 
such that for any d E ker A there exists a finite dimensional a-representation of r, i.e. 
H;oc( G, T )  = {(I, E H 2 (  G, T ) ,  W r x r  E ker A}. We analyse first the algebraic conditions 
determining a local representation group leaving aside the topological features. Then 
we can follow step by step the theory developed by Caririena and Santander (1979) 
for finite groups with the only substitution of the subgroup Hfoc(G,  T )  for H2(G, T )  
and Z;,,(G, T )  for ZZ(G,  T )  and we can assert that a local representation group for 
G determines an automorphism 8 of H;,,(G, T )  and a homomorphic section 
s : Elfoc( G, T )  + Z;,J G, T ) .  Conversely, given 8 E Autal,( H;,,( G, T ) )  and a homomor- 
phic section s : HfOc( G, T )  + Zfoc( G, T ) ,  the extension of G by H?,,(G, T )  given by 
the factor system W,,(g, h )  : (I, + s[8-'((I,)](g, h )  is a representation group for G. The 
existence of such a section s follows because B;,,( G, T )  is divisible, like in the corollary 
to Theorem 5 in the paper by Caririena and Santander (1979). Furthermore it was 
also proved that we can forget the automorphism 8. 

As far as topological aspects are concerned we recall that, in the case of a 
representation group where H 2 (  G, T )  instead of RI;,,( G, T )  arises, the possibility of 
endowing G with a topological Polish structure depends on the existence of a locally 
compact topology on H?oc( G, T )  such that for every pair (g,, g2) of elements in G the 
maps W(gl,  8,): (I, + [s(&)](gl, g2) are continuous (if there is such a topology, it is 
unique). The corresponding results with the substitution of H?,J G, T )  for H 2 (  G, T )  
hold for a local representation group. The point is that H;oc( G, T )  is closed in H 2 (  G, T )  
and therefore, if there is a locally compact representation group, the relative topology 
in H?,,( G, T )  endows it with a topology such that all the maps W(g, h )  : H?,J G, T )  + T 
are continuous and there is also then a local representation group for G. Moreover, if 
G and H2(G, T )  are Lie groups then the representation group is also a Lie group. In 
this case the closed subgroup H;,,(G, T )  will be a Lie group and therefore the local 
representation group is a Lie group too. 
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5. Examples 

5.1. Factor systems of locally operating realisations 

5.1.1. One of the most important symmetry groups is the three-dimensional proper 
rotation group SO,(R) i.e. the set of orthogonal transformations in three dimensions 
with determinant equal to + l .  It acts transitively on the spheres centred at the origin. 
The isotopy group of a point in such a (non-trivial) sphere is isomorphic to S02(R), 
rotations around the axis of the sphere determined by the point. 

The second cohomology group of connected and compact Lie groups is easily 
found according to a well known result by Moore (1964, proposition 2.1): it is 
isomorphic to t h s g r o u p  of the torsion subgroup of the first homotopy group of 
G, H 2 (  G, T )  = t (  T ,  ( G ) ) .  Moreover, H 2 (  G, T )  is finite. In the two cases with which 
we are concerned, 7rI(SO2(R)) = Z  and T,(SO,(R)) = Z 2  (see e.g. Boya et al 1978). 
Since H2(S03(R), T )  = Z2 and H2(S02(R), T) = 1 we can conclude that any factor 
system of SO,(R) arises in some locally operating representation of SO,(R), this fact 
giving rise to the possibility of existence of half-odd spin particles. Therefore 
H:,,(SO,(R), T )  = H2(S03(R), T )  =Z2. The elements of this group will be denoted [ I ]  
with 1 = *l .  A cocycle lifting [-11 will be denoted o - ~ .  

5.1.2. A similar result holds in the case of the ( 1  + 1)-dimensional space-time Galilei 
group where the isotopy group is made up by boosts, i.e. r is isomorphic to R. 
On the other side it is well known that H2(Gl , , ,  T)=R2 (see e.g. LCvy-Leblond 1972 
p 240 and 1974 p 11 1). The second cohomology group H 2 ( T ,  T )  being trivial, we have 
H?oc(Gl,~,  T )  = H2(Gl, , ,  T ) = R 2 .  On the contrary, for the case of the (2+ 
1)-dimensional space-time Galilei group G2, , ,  H?JG2,, ,  T )  is a proper subgroup of 
H2(G2, , ,  T ) .  Actually H2(G2, , ,  T) is isomorphic to R2 (see e.g. LCvy-Leblond 1972 p 
240). The (equivalence classes of) extensions of G,,, by T are characterised by a pair 
of real numbers [ k ,  m ]  indicating the two new non-vanishing commutation relations 
[ K , ,  K,] = kl, [ K ,  41 = ma,. The isotopy group r is the Euclidean group E(2) in two 
dimensions which is generated by J, K ,  and K2. The second cohomology group 
H2(T, T )  is R, the corresponding classes of extensions of T by T being characterised 
by the value of the parameter k arising in the commutation relation [ K , ,  K,] = kl. The 
factor system [k, m] of G,,, becomes the factor system [k] of r when restricted to r 
and it implies that only [0, m ]  factor systems of G2,i can appear in locally operating 
multiplier representations, i.e. H;oc( Gz,i, T )  = R. 

The second cohomology group of the Galilei group in four space-time dimensions 
is well known to be H 2 (  G2,1, T )  = Z 2 0 R .  In this case the isotopy group r is isomorphic 
to the Euclidean group in three dimensions and therefore H2(T, T )  = Z,. The theorem 
given in § 3 shows that H~,,(G3,1, T )  = H 2 (  G3,1, T )  = Z 2 0 R .  

5.1 -3. Kinematic groups of constant and uniform Galilean electromagnetic fields were 
investigated by Bacry er a1 (1970) (see also the more recent papers by Beckers and 
Hussin (1983a, b). The electric and magnetic fields become E' = E - U A B + 6 E, B' = 
B + 6 A B, under infinitesimal transformation (6, U) of the homogeneous Galilei group. 
There are three different cases. The first one corresponds to non-vanishing values of 
the invariant E .  B. In this case there exists an observer for whom E and B are parallel, 
say in the z-direction. The second cohomology group of this group G was shown to 
be isomorphic with R3 by Hoogland (1978a) and as the isotopy group r is generated 
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by the commuting elements J3 and K 3 ,  namely, r = ROSO(Z), the second cohomology 
group of r is trivial and henceforth Hfoc( G, T) = H2( G, T) = R3. 

The second case is when E .  B = 0, but B # 0. There exist then observers for whom 
E is zero and the results of the latter example still hold. The third case corresponds 
to pure electric uniform field which is an intrinsic notion in Galilean electromagnetism 
because IBI is invariant. The symmetry group is the eight-dimensional subgroup of 
the Galilei group generated by { J 3 ,  K,  P, Po} and the isotopy group, generated by 
{ J 3 ,  K } ,  is isomorphic to E(2)BR.  The respective second cohomology groups are 
H 2 (  G, T )  = R4 and H 2 ( r ,  T )  = R and therefore G, T )  = R3 but H (  G, T) = R4 such 
as indicated in Hoogland (1977, p 126). 

5.2. Local representation groups 

The first examples we are going to present satisfy the condition Elfoc( G, T )  = H 2 (  G, T )  
but they are chosen because they are well known for most physicists. 

The first example is that of SO3@) acting transitively on a sphere centred at the 
origin. The dual group of H2(S03(R), T )  is isomorphic to the cyclic group C, of two 
elements. The element generating such a group is A defined by A ( [ l ] )  = 1. Let us choose 
the identity automorphism on H 2 (  G, T )  and a homomorphic section s determined by 
a lifting wl = s(-1). The maps W , , , ( g ,  h )  are continuous if the discrete topology on 
H 2 ( G ,  T )  is considered and therefore there exists a representation group for S03(R) 
(Santander 1977) which is also a local representation group, namely the middle group 
of the non-trivial central extension defined by the factor system 

1 
A 

if W - ~ ( R ’ ,  R )  = 1 
if W - ~ ( R ’ ,  R )  = - 1  

W ( R ’ ,  R )  = 

which is isomorphic to the group SU2(C). Indeed, it is a well known fact that SU,(C) 
is a local representation group for SO,(R). 

As a second example we consider the above mentioned group E ( 2 )  whose locally 
operating multiplier representations were studied by Hoogland (1 978b) to prove the 
relevance of gauge equivalence versus the usual notion of equivalence of representa- 
tions. The natural action of E(2) on R2 is considered and the isotopy group will 
therefore be S02(R) whose second cohomology group is trivial. On the other side, 
H 2 ( E ( 2 ) ,  T )  is well known to be isomorphic with R. A class of extensions of E(2) is 
parametrised by [ p ]  and its algebra is given by the commutation relations: 

[ J ,  P1l= p2 [ J ,  P2l= -PI [PI, P21=/31 

and a cocycle lifting [ p ]  is w p ( ( a ’ ,  4‘), (a, 4)) =exp{i$(a’~  u ” ) ~ } .  
The second cohomology group of S02(R) being trivial, H;,,(E(2), T) coincides 

with H2(E(2) ,  T ) .  The (local) representation group can be obtained by means of the 
homomorphic section s : H 2 ( E ( 2 ) ,  T)+Z2(E(2 ) ,  T )  given by 

s ( [~I ) (a ’ ,  4’1, (a, 4)) = e x p W ( a ’  A ad’)31. 

If the identity isomorphism on H2(E(2) ,  T )  is chosen and the usual topology on 
R is considered, the maps wid,* defined as follows 

wd,s((a‘? #), (a, 4))[PI= exp{itp(a’ A am’)3) 

are continuous and w ’ d , s  E Z > ( E ( ~ ) ,  H-)) defines a central extension of ~ ( 2 )  
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by m), T )  which is a (local) representation group for E ( 2 ) .  If the elements of m), T )  are denoted a and they are defined as a ( [ P ] )  = eiap, the local representa- 
tion group is a Lie group E(2) (because H 2 ( E ( 2 ) ,  T )  is a Lie group) with elements 
(a ,  a, 4) and composition law: 

J F Carin’ena, M A del OImo and M Santander 

(a ’ ,  U ’ ,  4 ’ ) (a ,  U, 4)  = (a’+ CY + ; ( U ’  A U “ ) 3 ,  U ’ +  U * ’ ,  4’+ 4 ) .  

All the locally operating multiplier representations - of E ( 2 )  can be obtained from 
the (locally operating) linear representations of E(2) according to the methods 
developed in Cariiiena and Santander (1979) and Cariiiena et a1 (1982). 

Another interesting example is the Newton-Hooke group (Bacry and LCvy-Leblond 
1968, Derome and Dubois 1972), a relativistic generalisation of which was recently 
proposed as a dynamical group for hadrons (Roman and Haavisto 1981). For the sake 
of simplicity only the ( 1  + 1)-dimensional space-time case will be considered. The 
group is then a three-dimensional Lie group N,, with the only non-vanishing commuta- 
tion relations in its algebra [ P, HI = *r-’K, [ K ,  HI = P. The parameter r is a constant 
corresponding to a characteristic time of the Hooke universe. The action of N- on 
the space-time, given by (b ,  a, U): (x, t ) ( x  +UT sin( t / r )  + a  cos( t / ~ ) ,  t + b ) ,  is transitive 
and the isotopy group is the one-dimensional Lie subgroup generated by K, i.e., it 
is isomorphic with R, and consequently, as H 2 ( T ,  T )  = 1, Htoc( N-, T )  coincides with 
H 2 (  N-,  T ) .  Since similar results hold for the N ,  case, we will only deal with the N -  
group and the minus sign will be omitted. 

The second cohomology group of N is easily found to be isomorphic with R, every 
class of extensions of N by T being labelled by the real number [ m ] ,  a representative 
of which has the four-dimensional Lie algebra with defining relations 

1 
[ P , H ] = - - K  [ K ,  H I =  P [ K, PI = ml. 

7 

A cocycle of the class [ m ]  is given by (Derome and Dubois 1972) 

If the identity isomorphism of H 2 (  N, T )  is considered, the homomorphic section 
s: H’(N,  T ) + Z 2 ( N ,  T )  defined by s ( [ m ] ) ( h ’ ,  h )  = w , ( h ‘ ,  h )  allows the construction 
of W,d,r: N x N + H 2 (  N, T )  by means of 

wrd,s((h‘, h))[mI=wm(h‘ ,  h )  

and the cocycle W,d,s E Z2( N, 
which is a representation group for N. It is a four-dimensional Lie group 
elements (a ,  h )  = (a ,  b, a, U )  and composition law 

)) defines a central extension of N by W T )  
with 

( a ’ , b ’ , a ’ , u ’ ) ( a ,  b , a , u ) = ( a ‘ + a + w , ( h ’ , h ) , h ’ h ) .  

The set of the (locally operating) multiplier representations of N can be found from 
that of (locally operating) linear representations of N, which are easily found if one 
uses the factorisation of R as a semidirect product N = (9 0 V) 0 9 with 9 = R@Y. 
Here Y,  Y and 7f  denote the one-parameter subgroups of space translations, time 
translations and boosts respectively. This group can be shown to be isomorphic with 
E (21, the corresponding isotopy groups being, however, non-isomorphic. 
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As a final example we will deal with the case of the Galilei group in (2+  1)  
space-time dimensions for which H?0,(G2,1, T )  is a proper subgroup of H2(G2,1, T) 
such as indicated formerly. The only difference with the method explained above is 
the choice of a homomorphic section s :  H?oc(Gz,l, T)+Z?oc(G2,1 ,  T )  instead of 
s : H 2 (  G2,1, T )  + Z’( G2,1, T ) .  The elements of H:0c(G2,1, T )  are parametrised by [ m ]  
and the homomorphic section s given by 

s ( [ m ] ) ( g ‘ ,  g )  = w , ( g ‘ ,  g) = exp[imi(bu’+ U‘ a” ) ]  

allows the construction of a local r ep resen ta t ionsup  G2,1 defined as the middle 
group of the central extension of G2,1 by H2(G2,1, T )  determined by the following 
factor system W E  22(G2,1, H2(G2,1, T ) ) :  

W ( g ’ ,  g ) [ m ]  = w,(g’ ,  g )  = exp[ im( tb~’~  + u’a’’ ) ] .  

The group G2,, is a seven-dimensional Lie group G2,! with elements ( a , g ) =  
( a ,  b, a, v, R )  and composition law 

(a ’ ,  g ’ ) ( a ,  8 )  =(a’+a  + w l ( g ‘ ,  g ) ,  g ’ g ) .  

The locally operating representations of G2,1 can be used to determine the locally 
operating multiplier representation of G2,1, following the method of Caririena et a1 
(1982). 
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